

2025 Special Seminar on The IDEC Institute

Mechanism Guided Development of Next-Generation Antitubercular Drugs

Abstract

Tuberculosis (TB) remains one of the world's deadliest infectious diseases, with treatment challenged by lengthy regimens and the rise of drug resistance. A key component of current therapy is pyrazinamide (PZA), a drug uniquely capable of targeting nongrowing populations of Mycobacterium tuberculosis by disrupting coenzyme A metabolism. Yet, PZA's action is conditional—requiring host stress factors such as low pH—and resistance to the drug is increasing worldwide. In this seminar, Dr. Anthony Baughn, Professor of Microbiology & Immunology at the University of Minnesota Medical School and Director of the UMN Biosafety Level 3 Program, will present recent work on the mechanism of action of morphazinamide (MZA), a next-generation PZA analog. Unlike PZA, MZA displays robust bactericidal activity without the need for potentiation by environmental stress and retains potency against PZA-resistant strains. Dr. Baughn and colleagues discovered that MZA operates through a dual-action mechanism: disruption of coenzyme A metabolism, like PZA, coupled with an unexpected aldehyde-dependent activity that enhances killing and raises the barrier to resistance. This dual self-potentiating mechanism highlights new opportunities for drug discovery aimed at overcoming the growing challenge of drugresistant TB. Beyond detailing the discovery process, Dr. Baughn will discuss how these findings may guide the rational design of improved therapeutic agents that exploit metabolic vulnerabilities of M. tuberculosis.

Presenter Dr. Anthony Baughn

Professor

Department of Microbiology and Immunology University of Minnesota Medical

Contact

Fumito Maruyama, Ph.D.

E-mail: fumito@hiroshima-u.ac.jp

HP: https://mge.hiroshima-u.ac.jp/en/